Microwave Assisted Synthesis of Novel Methylenebis{2-[(1-benzyl/cyclohexyl-1*H*-1,2,3-triazol-4-yl)methoxy]chalcones} and Their Antibacterial Activity¹

S. Ramesh, D. Ashok, G. Linga Goud, and V. Prabhakar Reddy

Department of Chemistry, Osmania University, Hyderabad, 500007, India e-mail: ashokdou@gmail.com

Received June 16, 2014

Abstract—A series of novel methylenebis {2-[(1-benzyl/cyclohexyl-1*H*-1,2,3-triazol-4-yl)methoxy]chalcones} (**IVa–IVn**) have been synthesized by the Click reaction and Claisen-Schmidt condensation of 5,5'-methylenebis[2-(prop-2-yn-1-yloxy)benzaldehyde] under microwave irradiation with high yields. All products have been characterized by spectral data including FT-IR, ¹H, and ¹³C NMR, mass spectrometry, and tested for their antibacterial activity.

Keywords: antibacterial activity, bis-1,2,3-triazoles, chalcones, click chemistry, microwave irradiation

DOI: 10.1134/S1070363214080283

INTRODUCTION

1,2,3-Triazoles play an important role in organic synthesis due to easy synthetic approach by the click reaction, important properties as well as numerous biological activities [1]. 1,2,3-Triazoles are highly stable in basic and acidic media, under reductive and oxidative conditions that indicate their aromatic character [2]. 1,2,3-Triazoles participate in hydrogen bonding, which is favorable in binding with biomolecular targets [3]. 1,2,3-Triazole moiety is one of the key structural units of a wide variety of bioactive molecules that exhibit antifungal [4], antibacterial [5], anti-HIV [6], antitubercular [7], antiinflammatory [8], anticancer [10], antioxidant and antimicrobial [11] activities. 1,2,3-Triazole forms the core structures in some well marketed drugs such as tazobactam, cefatrizine, carboxyamidotriazole [9]. Chalcones are common natural pigments and they are important intermediates in synthesis of a number of heterocyclic compounds. Synthetic and naturally occurring chalcones have been extensively studied and developed as pharmaceutically important molecules. Combination of 1,2,3-triazole and chalcone pharmacophores can enhance their biological activity, which prompted us to perform the synthesis of compounds containing both 1,2,3--triazole and chalcone moieties.

RESULTS AND DISCUSSION

The synthetic route for titled compounds is presented in Scheme 1. The compound I [13] reacted with propargyl bromide in dry acetone in presence of anhydrous K₂CO₃ and resulted in the propargylated compound II. The latter reacted with benzyl azide or cyclohexyl azide in presence of catalytic amount of CuSO₄·5H₂O and sodium ascorbate in t-butylalcohol: water (1:1) to give substituted triazoles IIIa or IIIb. The process was carried out under microwave irradiation and also by conventional method. The compounds IIIa and IIIb reacted with aryl methyl ketones in presence of KOH-alcohol under microwave irradiation to give title compounds IVa-IVn with the average yield 80-90%. We have carried out the same reaction by conventional method that resulted in much lower yield of the products.

In the current study microwave irradiation was employed for reducing reaction time and improving yields of reactions. Several reviews had been published on various aspects of microwave-assisted chemistry [12]. Therefore we synthesized the title compounds under microwave irradiation. Comparison of our data with those accumulated for conventional thermal reactions demonstrated the strong effect of microwave irradiation on the reaction rate and made it possible to shorten the reaction time and achieve high yields.

¹ The text was submitted by the authors in English.

CHO

IIIa, IIIb

Scheme 1.

propargyl bromide, K₂CO₃, acetone

$$Ar = R^4 \xrightarrow{R^3} R^1; \quad IVf: Ar = -\xi \xrightarrow{S}$$

IVa: $R^1 = H$, $R^2 = H$, $R^3 = OCH_3$, $R^4 = H$, $R^5 = PhCH_2$; **IVb**: $R^1 = OH$, $R^2 = H$, $R^3 = CH_3$, $R^4 = Cl$, $R^5 = PhCH_2$; **IVc**: $R^1 = OH$, $R^2 = H$, $R^3 = CH_3$, $R^4 = Cl$, $R^5 = PhCH_2$; **IVc**: $R^1 = OH$, $R^2 = H$, $R^3 = H$, $R^4 = F$, $R^5 = PhCH_2$; **IVe**: $R^1 = OH$, $R^2 = H$, $R^3 = H$, $R^4 = H$, $R^5 = PhCH_2$; **IVg**: $R^1 = OH$, $R^2 = Cl$, $R^3 = H$, $R^4 = Cl$, $R^5 = PhCH_2$; **IVh**: $R^1 = H$, $R^2 = H$, $R^3 = CH_3$, $R^4 = H$, $R^5 = PhCH_2$; **IVi**: $R^1 = H$, $R^2 = H$, $R^3 = H$, $R^4 = H$, $R^5 = PhCH_2$; **IVj**: $R^1 = OH$, $R^2 = H$, $R^3 = H$, $R^4 = Br$, $R^5 = C_6H_{11}$; **IVk**: $R^1 = OH$, $R^2 = H$, $R^3 = H$, $R^4 = R$, $R^5 = C_6H_{11}$; **IVI**: $R^1 = OH$, $R^2 = H$, $R^3 = H$, $R^4 = Cl$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = Cl$, $R^3 = H$, $R^4 = Cl$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = H$, $R^3 = CH_3$, $R^4 = Cl$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = H$, $R^3 = CH_3$, $R^4 = Cl$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = CH_3$, $R^4 = CL$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = CH_3$, $R^4 = CL$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = CH$, $R^3 = CH_3$, $R^4 = CL$, $R^5 = C_6H_{11}$; **IVm**: $R^1 = OH$, $R^2 = CH$, $R^3 = CH_3$, $R^4 = CL$, $R^5 = C_6H_{11}$; $R^5 = C_$

Antibacterial activity. All compounds IVa–IVn were tested for their antibacterial activity against *Escherichia coli* and *Staphylococcus aureus* using Ampicillin as a standard drug. The activity was studied using cup plate agar diffusion method by measuring the zone of inhibition in mm. Compounds IVb, IVc, IVh, and IVn displayed inhibition potency against both strains.

HO

IVa-IVn

EXPERIMENTAL

All chemicals were purchased from Aldrich and Merk. All microwave reactions were carried out using multiSynth series microwave oven system (Milestone).

Melting points were measured in open capillary tubes. The IR spectra were recorded as KBr pellets with a Shimadzu FT-IR-8400s spectrophotometer. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) were measured with Bruker Avance II 400 spectrometer using tetramethylsilane as an internal standard in CDCl₃ and DMSO-*d*₆ solutions. Mass spectra were measured with a Hewlett-Packard 1100 LC/MSD spectrometer.

Synthesis of 5,5'-methylenebis[2-(prop-2-yn-1-yloxy)benzaldehyde] (II). A mixture of the solution of I 5.0 g (10 mmol) in dry acetone (5 mL) in presence of anhydrous K_2CO_3 and propargyl bromide 4.5 g

1610

Antibacterial data of target compounds

Compound	Zone of Inhibition, mm Escherichia coli			Zone of Inhibition, mm Staphylococcus aureus		
	IVa	12	14	20	6	8
IVb	18	22	25	8	10	13
IVc	9	12	16	7	10	12
IVd	8	11	15	6	7	9
IVe	10	15	16	6	6	7
IVf	16	18	23	5	6	6
IVg	16	17	22	4	4	5
IVh	11	15	18	4	6	9
IVi	12	15	18	2	4	5
IVj	11	14	16	7	9	13
IVk	13	17	19	3	3	6
IVI	17	19	21	7	9	10
IVm	15	18	19	4	5	7
IVn	19	21	23	7	9	11
Ampicillin	20	22	25	9	10	12

(20 mmol) was stirred and refluxed for 5 h. Progress of the reaction was monitored by TLC. Upon completion of the reaction, the solvent was evaporated and the solid residue purified by column chromatography on silica gel (60–120 mesh) with eluent hexane/EtOAc to give compound **II**. IR spectrum (KBr), v, cm⁻¹: 1166 (O–C), 1267 (Ar–O), 1560 (C=C_{arom}), 1710 (C=O). 1 H NMR spectrum (CDCl₃), δ , ppm: 2.57 s (2H, C=CH), 3.93 s (2H, ArCH₂Ar), 4.81 s (4H, OCH₂), 7.04–7.67 m (6H_{arom}), 10.37 s (2H, CHO). 13 C NMR spectrum (CDCl₃), δ , ppm: 38.9, 62.0, 80.1 (C=C), 122.6, 123.2, 126.8, 128.4, 128.7, 128.9, 129.0, 130.0, 134.2, 134.6, 134.9, 157.9, 193.0 (C=O). MS (m/z): 332 [M + H] $^{+}$.

5,5'-Methylenebis{2-[(1-benzyl-1*H***-1,2,3-triazol-4-yl)methoxy]benzaldehyde} (IIIa).** *a. Conventional method.* A mixture of 2.0 g (6 mmol) of compound **II**, benzyl azide 1.7 g (12 mmol), catalyticamount of CuSO₄·5H₂O, and sodium ascorbate in *t*-butylalcohol: water (1:1) was stirred for 24 h at room temperature. Progress of the reaction was monitored by TLC. The reaction mixture was poured over ice, the solid obtained was filtered off, washed with water and recrystallized from ethanol.

b. Microwave irradiation method. A mixture of 2.0 g (6 mmol) of compound II, benzyl azide 1.7 g (12 mmol), was treated with catalytic amount of CuSO₄·5H₂O and sodium ascorbate in DMF under microwave irradiation at 180 W for 6 min. Upon completion of the reaction as indicated by TLC, the reaction mixture was poured onto ice cold water and the residual solid was filtered off, washed with water, and recrystallized from ethanol. IR spectrum (KBr), v, cm⁻¹: 1160 (O-C), 1267 (Ar–O), 1556 (C=C_{arom}), 1567 (N=N), 1701 (C=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 3.89 s (2H, ArCH₂Ar), 5.28 s (4H, CH₂Ph), 5.55 s (4H, OCH₂), 7.14–7.44 m (16H_{arom}), 7.55 s (2H_{heteroarom}), 10.37 s (2H, CHO). ¹³C NMR spectrum (CDCl₃), δ, ppm: 39.6, 54.3, 62.6, 113.4, 122.7, 124.9,128.1, 128.4, 128.9, 129.2, 133.6, 134.3, 136.3, 143.7, 159.1, 189.5 (C=O). MS (*m/z*): $599 [M + H]^{+}$.

5,5'-Methylenebis{2-[(1-cyclohexyl-1*H***-1,2,3-tri-azol-4-yl)methoxy|benzaldehyde} (IIIb).** *a. Conventional method.* A mixture of compound 2.0 g (6 mmol) of compound **II**, cyclohexyl azide 1.5 g (12 mmol), catalytic amount of CuSO₄·5H₂O, and sodium ascorbate in *t*-butylalcohol: water (1:1) was stirred

for 24 h at *RT*. Progress of the reaction was monitored by TLC. The reaction mixture was poured over ice, the solid obtained was filtered, washed with water and recrystallized from ethanol.

b. Microwave irradiation method. A mixture of compound II 2.0 g (6 mmol), cyclohexyl azide 1.5 g (12 mmol), catalytic amount of CuSO₄·5H₂O and sodium ascorbate in DMF was subjected to react under microwave irradiation at 180 W for 6 min. Upon completion of the reaction as indicated by TLC, the reaction mixture was poured onto ice cold water and the solid that separated out was filtered, washed with water, and recrystallized from ethanol. IR spectrum (KBr), v, cm⁻¹: 1168 (O-C), 1260 (Ar-O), 1556 $(C=C_{arom})$, 1576 (N=N), 1705 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.44-2.25 m (22H, CH₂-CH₂), 3.89 s (2H, ArCH₂Ar), 5.30 s (4H, OCH₂), 7.14– 7.44 m (16H_{arom}), 7.55 s (2H_{heteroarom}), 10.37 s (2H, CHO). ¹³C NMR spectrum (CDCl₃), δ , ppm: 38.2, 62.4, 112.4, 122.8, 123.6, 127.0, 128.4, 128.6, 128.9, 129.1, 130.2, 134.1, 134.6, 136.3, 143.0, 158.0, 190.5 (C=O). MS (m/z): 583 $[M + H]^+$.

General synthesis of methylenebis{2-[(1-benzyl/cyclohexyl-1*H*-1,2,3-triazol-4-yl)methoxy]chalcones} (IVa–IVn). a. Conventional method. 0.16 mmol of a compound IIIa or IIIb was condensed with 0.3 mmol of an arylmethylketone under the action of KOH–alcohol at room temperature. Progress of the reaction which lasted for 12–14 h was monitored by TLC. Upon completion of the process the reaction mixture was poured onto ice cold water and the residual solid product filtered off and purified with column chromatography using mixture of petroleum ether and ethyl acetate as an eluent.

b. Microwave irradiation method. A solution of 0.16 mmol of a compound **IIIa** or **IIIb** and 0.3 mmol of an arylmethylketone in ethanol was treated with KOH under microwave irradiation at 320 W for 7–9 min. The reaction mixture was poured onto ice cold water and the residual solid product filtered off and purified with column chromatography.

(2*E*,2'*E*)-3,3'-Dimethylenebis{2-[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methoxy]-5,1-phenylene)}bis[1-(4-methoxyphenyl)prop-2-en-1-one] (IVa). Yield 69% (method *a*) and 90% (method *b*), mp 164–166°C. IR spectrum (KBr), ν, cm⁻¹: 1169 (O–C), 1282 (Ar–O), 1575 (N=N), 1603 (C=C), 1651 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.31 s (6H, ArOCH₃), 3.93 s (2H, ArCH₂Ar), 5.25 s (4H, CH₂Ph), 5.63 s (4H,

OCH₂), 7.0–7.04 d (2H, =C^αH, J 15.5 Hz), 7.25–7.90 m (24H_{arom}), 7.91–7.95 d (2H, =C^βH, J 15.5 Hz), 8.32 s (2H_{heteroarom}). ¹³C NMR spectrum (CDCl₃), δ, ppm: 30.6, 52.8 (ArOCH₃), 55.2, 61.6, 113.3, 113.9, 122.0, 123.2, 124.8, 127.8, 128.0, 128.6, 129.2, 130.6, 132.0, 134.1, 135.9, 142.6, 155.5, 163.1, 187.3 (C=O). MS (m/z): 863 [M + H]⁺. Found, %: C 73.74; H 5.35; N 9.76. C₅₃H₄₆N₆O₆. Calculated, %: C 73.76; H 5.37; N 9.74.

 $(2E,2'E)-3,3'-\{Methylenebis[2-([1-benzyl-1]H-$ 1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(5chloro-2-hydroxy-4-methylphenyl)prop-2-en-1-onel (**IVb).** Yield 70% (method *a*) and 89% (method *b*), mp 188–190°C. IR spectrum (KBr), v, cm⁻¹: 1193 (O–C), 1263 (Ar-O), 1572 (N=N), 1582 (C=C), 1642 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.38 s (6H, ArCH₃), 3.97 s (2H, ArCH₂Ar), 5.25 s (4H, CH₂Ph), 5.61 s (4H, OCH₂), 7.0-7.36 m (20H_{arom}), 7.92-7.96 d $(2H, =C^{\alpha}H, J 15.6 Hz), 8.07-8.10 d (2H, =C^{\beta}H, J)$ 15.6 Hz), 8.31 s (2H_{heteroarom}), 12.82 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ , ppm: 28.9 (ArCH₃), 38.4, 55.2, 64.2, 98.5, 121.6, 123.4, 126.8, 128.0, 128.4, 128.7, 128.9, 130.2, 134.0, 134.2, 134.5, 142.6, 143.1, 155.4, 164.0, 198.6 (C=O). MS (m/z): 931 $[M + H]^{+}$. Found, %: C 68.26; H 4.67; N 9.20%. C₅₁H₄₄Cl₂N₆O₆. Calculated, %: C 68.31; H 4.76; N 9.02.

 $(2E,2'E)-3,3'-\{Methylenebis[2-([1-benzyl-1H-$ 1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(5bromo-2-hydroxyphenyl)prop-2-en-1-one Yield 69% (method a) and 90% (method b), mp 155-158°C. IR spectrum (KBr), v, cm⁻¹: 1183 (O–C), 1286 (Ar–O), 1567 (N=N), 1572 (C=C), 1640 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.96 s (2H, ArCH₂Ar), 5.24 s (4H, CH₂Ph), 5.62 s (4H, OCH₂), 7.33–7.37 d (2H, = $C^{\alpha}H$, J 16 Hz), 7.25-7.98 m $(22H_{arom})$, 8.04–8.08 d (2H, =C^{β}H, J 16 Hz), 8.30 s (2H_{heteroarom}), 12.49 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ , ppm: 48.5, 52.8, 61.8, 110.2, 113.6, 120.0, 121.8, 122.8, 123.3, 124.7, 127.8, 128.0, 128.6, 132.2, 132.9, 134.0, 135.9, 138.0, 139.5, 142.6, 155.7, 160.0, 192.2 (C=O). MS (m/z): 991 $[M + H]^+$. Found, %: C 61.68; H 4.02; N 8.48. C₅₁H₄₀Br₂N₆O₆. Calculated, %: C 61.76; H 4.06; N 8.47.

(2*E*,2'*E*)-3,3'-{Methylenebis[2-([1-benzyl-1*H*-1,2,3-triazol-4-yl]methoxy)-5,1-phenylene]}bis[1-(5-fluoro-2-hydroxyphenyl)prop-2-en-1-one] (IVd). Yield 67% (method *a*) and 86% (method *b*), mp 70–72°C. IR spectrum (KBr), v, cm⁻¹: 1178 (O–C), 1282 (Ar–O), 1569 (N=N), 1578 (C=C), 1638 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.96 s (2H,

RAMESH et al.

ArCH₂Ar), 5.24 s (4H, CH₂Ph), 5.62 s (4H, OCH₂), 7.65–7.69 d (2H, =C^αH, J 15.6 Hz), 7.02–7.59 m (22H_{arom}), 8.03–8.07 d (2H, =C^βH, J 15.6 Hz), 8.30 s (2H_{heteroarom}), 12.79 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ, ppm: 42.6, 54.4, 63.0, 97.8, 122.8, 123.2, 126.8, 128.0, 128.4, 128.7, 128.9, 130.2, 134.0, 134.2, 134.5, 142.6, 143.1, 154.4, 162.0, 197.2 (C=O). MS (m/z): 871 [M + H]⁺. Found, %: C 70.31; H 4.64; N 9.63. C₅₁H₄₀F₂N₆O₆. Calculated, %: C 70.34; H 4.63; N 9.65.

 $(2E,2'E)-3,3'-\{Methylenebis[2-([1-benzyl-1H-$ 1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(2hydroxyphenyl)prop-2-en-1-onel (IVe). Yield 64% (method a) and 83% (method b), mp 108-110°C. IR spectrum (KBr), v, cm⁻¹: 1189 (O-C), 1287 (Ar-O), 1556 (N=N), 1564 (C=C), 1642 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.96 s (2H, ArCH₂Ar), 5.28 s (4H, CH₂Ph), 5.57 s (4H, OCH₂), 7.01-7.58 m $(24H_{arom})$, 7.45–7.49 d $(2H, =C^{\alpha}H, J 15.5 Hz)$, 7.58 s $(2H_{heteroarom})$, 8.03–8.07 d $(2H_{heteroarom})$, 15.5 Hz, 12.91 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ , ppm: 39.8, 54.3, 62.6, 113.0, 118.4, 118.8, 121.6, 122.8, 123.9, 128.0, 128.1, 128.9, 129.1, 129.8, 132.4, 133.8, 134.2, 136.2, 140.9, 143.9, 156.4, 163.5, 194.2 (C=O). MS (m/z): 835 $[M + H]^+$. Found, %: C 73.33; H 5.08; N 10.05. C₅₁H₄₂N₆O₆. Calculated, %: C 73.37; H 5.07; N 10.07.

 $(2E,2'E)-3,3'-\{Methylenebis[2-([1-benzyl-1H-$ 1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(thiophen-2-yl)prop-2-en-1-one] (IVf). Yield 60% (method a) and 78% (method b), mp 126–128°C. IR spectrum (KBr), v, cm⁻¹: 1124 (O-C), 1237 (Ar-O), 1564 (N=N), 1571 (C=C), 1640 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.93 s (2H, ArCH₂Ar), 5.25 s (4H, CH₂Ph), 5.63 s (4H, OCH₂), 7.22–8.03 m $(22H_{arom})$, 7.84–7.86 d $(2H, =C^{\alpha}H, J.8.3 Hz)$, 8.02-8.03 d (2H, = $C^{\beta}H$, J 8.3 Hz), 8.32 s (2H_{heteroarom}). ¹³C NMR spectrum (CDCl₃), δ, ppm: 42.7, 54.2, 62.0, 98.6, 122.4, 123.2, 126.8, 128.0, 128.4, 128.7, 128.9, 130.2, 134.0, 134.2, 134.5, 142.6, 143.1, 155.4, 155.6, 194.2 (C=O). MS (m/z): 815 $[M + H]^+$. Found, %: C 69.25; H 4.68; N 10.34; S 7.85. C₄₇H₃₈N₆O₄S₂. Calculated, %: C 69.27; H 4.70; N 10.31; S 7.87.

(2*E*,2'*E*)-3,3'-{Methylenebis[2-([1-benzyl-1*H*-1,2,3-triazol-4-yl]methoxy)-5,1-phenylene[}bis[1-(3,5-dichloro-2-hydroxyphenyl)prop-2-en-1-one] (IVg). Yield 65% (method *a*) and 83% (method *b*), mp 171–173°C. IR spectrum (KBr), ν, cm⁻¹: 1124 (O–C), 1267 (Ar–O), 1567 (N=N), 1577 (C=C), 1630 (C=O). ¹H

NMR spectrum (CDCl₃), δ , ppm: 3.96 s (2H, ArCH₂Ar), 5.29 s (4H, CH₂Ph), 5.57 s (4H, OCH₂), 7.14–7.44 m (20H_{arom}), 7.22–7.26 d (2H, =C^{α}H, J 15.6 Hz), 8.11-8.15 d (2H, =C^{β}H, J 15.6 Hz), 8.22 s (2H_{heteroarom}), 13.48 s (2H, O–H). ¹³C NMR spectrum (CDCl₃), δ , ppm: 39.7, 54.3, 62.6, 113.1, 120.1, 121.1, 122.7, 123.1, 123.4, 123.9, 127.5, 128.1, 128.4, 128.9, 129.1, 130.7, 133.7, 134.3, 135.5, 143.0, 143.7, 156.7, 157.9, 193.0(C=O). MS (m/z): 971 [M + H]⁺. Found, %: C 62.91; H 3.92; N 8.61. C₅₁H38Cl4N₆O₆. Calculated, %: C 62.97; H 3.94; N 8.64.

 $(2E,2'E)-3,3'-\{Methylenebis[2-([1-benzyl-1H-$ 1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(ptolyl)prop-2-en-1-onel (IVh). Yield 67% (method a) and 86% (method b), mp 143–145°C. IR spectrum (KBr), v, cm⁻¹: 1147 (O–C), 1279 (Ar–O), 1609 (N=N), 1611 (C=C), 1651 (C=O). ¹H NMR spectrum (CDCl₃), δ. ppm: 2.37 s (6H, Ar–CH₃), 3.92 s (2H, ArCH₂Ar), 5.24 s (4H, CH₂Ph), 5.63 s (4H, OCH₂), 7.20–7.95 m (24 H_{arom}), 7.22–7.24 d (2H, = $C^{\alpha}H$, J 10.8 Hz), 7.93–7.96 d (2H, = $C^{\beta}H$, J 10.8 Hz), 8.33 s (2H_{heteroarom}). ¹³C NMR spectrum (CDCl₃), δ, ppm: 21.1 (ArCH₃), 39.0, 52.8, 61.7, 110.6, 123.1, 124.8, 127.8, 128.0, 128.4, 128.6, 129.2, 135.1, 135.9, 142.6, 143.4, 155.6, 195.3 (C=O). MS (m/z): 831 $[M + H]^{+}$. Found, %: C 76.57; H 5.56; N 10.16. C₅₃H₄₆N₆O₄. Calculated, %: C 76.61; H 5.58; N 10.11.

 $(2E,2'E)-3,3'-\{Methylenebis[2-([1-benzyl-1H-$ 1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1phenylprop-2-en-1-one (IVi). Yield 69% (method a) and 84% (method b), mp 134-136°C. IR spectrum (KBr), v, cm⁻¹: 1147 (O–C), 1276 (Ar–O), 1572 (N=N), 1602 (C=C), 1679 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.92 s (2H, ArCH₂Ar), 5.27 s (4H, CH₂Ph), 5.52 s (4H, OCH₂), 7.22–7.95 m (26H_{arom}), $7.18-7.22 \text{ d } (2H, =C^{\alpha}H, J 16 \text{ Hz}), 7.98-8.02 \text{ d } (2H, T)$ $=C^{\beta}H$, J 16 Hz), 8.12 s (2H_{heteroarom}). ¹³C NMR spectrum (CDCl₃), δ, ppm: 43.2, 54.2, 62.6, 113.0, 122.8, 123.2, 124.2, 127.8, 128.5, 129.0, 129.9, 131.6, 134.6, 136.9, 138.3, 140.2, 144.1, 144.9, 153.4, 156.0, 190.9 (C=O). MS (m/z): 803 $[M + H]^+$. Found, %: C 76.26; H 5.25; N 10.52. C₅₁H₄₂N₆O₄. Calculated, %: C 76.29; H 5.27; N 10.47.

(2*E*,2'*E*)-3,3'-{Methylenebis(2-([1-cyclohexyl-1*H*-1,2,3-triazol-4-yl]methoxy)-5,1-phenylene]}bis-[1-(5-bromo-2-hydroxyphenyl)prop-2-en-1-one] (IVj). Yield 70% (method *a*) and 90% (method *b*), mp 169–171°C. IR spectrum (KBr), v, cm⁻¹: 1183 (O–C), 1284 (Ar–O), 1576 (N=N), 1595 (C=C), 1638 (C=O).

¹H NMR spectrum (CDCl₃), δ, ppm: 1.25–2.20 m (22H, CH₂–CH₂), 3.99 s (2H, ArCH₂Ar), 5.32 s (4H, OCH₂), 7.48–7.66 m (12H_{arom}), 7.62–7.66 d (2H, =C^αH, J 15.8 Hz), 8.17–8.21 d (2H, =C^βH, J 15.8 Hz), 7.68 s (2H_{heteroarom}), 12.82 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ, ppm: 25.1, 29.7, 33.5, 39.8, 60.2, 63.0, 110.3, 113.4, 120.5, 121.4, 121.8, 123.7, 130.0, 131.9, 133.0, 133.7, 138.6, 138.8, 142.1, 143.0, 143.4, 156.6, 1557.6, 162.4, 193.2 (C=O). MS (m/z): 975 [M + H]⁺. Found, %: C 60.58; H 5.11; N 8.47. C₄₉H₄₈Br₂N₆O₆. Calculated, %: C 60.25; H 4.95; N 8.60.

(2E,2'E)-3,3'-{Methylenebis|2-([1-cyclohexyl-1*H*-1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(5fluoro-2-hydroxyphenyl)prop-2-en-1-on Yield 65% (method a) and 84% (method b), mp 72– 75°C. IR spectrum (KBr), v, cm⁻¹: 1183 (O–C), 1286 (Ar–O), 1567 (N=N), 1592 (C=C), 1638 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.25–2.20 m (22H, CH₂-CH₂), 3.86 s (2H, ArCH₂Ar), 5.30 s (4H, OCH₂), 7.12-7.14 d (2H, = C^{α} H, J 16 Hz), 7.48-7.66 m $(12H_{arom})$, 7.62–7.64 d $(2H, =C^{\beta}H, J 16 Hz)$, 8.11 s (2H_{heterogrom}), 12.69 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ, ppm: 25.4, 29.7, 33.4, 42.5, 60.2, 62.4, 118.2, 119.4, 133.0, 143.0, 155.0, 158.6, 204.4 (C=O). MS (m/z): 855 $[M + H]^+$. Found, %: C 69.09; H 5.63; N 9.65. C₄₉H₄₈F₂N₆O₆. Calculated, %: C 68.84; H 5.66; N 9.83.

(2E,2'E)-3,3'-{Methylenebis[2-([1-cyclohexyl-1*H*-1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(2hydroxyphenyl)prop-2-en-1-onel (IVI). Yield 66% (method a) and 87% (method b), mp 83–85°C. IR spectrum (KBr), v, cm⁻¹: 1185 (O–C), 1276 (Ar–O), 1568 (N=N), 1596 (C=C), 1640 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.25–2.20 m (22H, CH₂– CH₂), 3.73 s (2H, ArCH₂Ar), 5.19 s (4H, OCH₂), 7.40– 7.43 d (2H, = C^{α} H, J 10.0 Hz), 7.48–7.66 m (14H_{arom}), 7.57 s (2H_{heteroarom}), 7.79-7.82 d (2H, =C^{β}H, J 10.0 Hz), 12.2 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ, ppm: 25.0, 29.7, 33.4, 42.6, 60.2, 62.6, 118.3, 118.9, 119.0, 130.2, 136.3, 143.7, 154.1, 162.4, 205.3 (C=O). MS (m/z): 819 $[M + H]^+$. Found, %: C 71.11; H 6.26; N 10.12. C₄₉H₅₀N₆O₆. Calculated, %: C 71.86; H 6.15; N 10.26.

(2*E*,2'*E*)-3,3'-{Methylenebis[2-([1-cyclohexyl-1*H*-1,2,3-triazol-4-yl]methoxy)-5,1-phenylene]}bis[1-(3,5-dichloro-2-hydroxyphenyl)prop-2-en-1-one] (IVm). Yield 68% (method *a*) and 89% (method *b*), mp 183–185°C. IR spectrum (KBr), ν , cm⁻¹: 1183 (O–C), 1286

(Ar–O), 1575 (N=N), 1567 (C=C), 1640 (C=O). 1 H NMR spectrum (CDCl₃), δ, ppm: 1.25–2.20 m (22H, CH₂–CH₂), 3.98 s (2H, ArCH₂Ar), 5.32 s (4H, OCH₂), 7.65–7.69 d (2H, =C^αH, J 15.5 Hz), 7.48–7.66 m (10H_{arom}), 7.67 s (2H_{heteroarom}), 8.17–8.21 d (2H, =C^βH, J 15.5 Hz), 13.49 s (2H, OH). 13 C NMR spectrum (CDCl₃), δ, ppm: 25.1, 29.7, 33.5, 39.2, 60.3, 62.9, 113.4, 120.5, 123.1, 123.5, 127.5, 130.5, 133.3, 133.7, 135.5, 142.8, 143.1, 156.8, 157.9, 193.1 (C=O). MS (m/z): 955 [M + H]⁺. Found, %: C 61.84; H 4.96; N 8.70. C₄₉H₄₆Cl₄N₆O₆. Calculated, %: C 61.51; H 4.85; N 8.76.

(2E,2'E)-3,3'-{Methylenebis|2-([1-cyclohexyl-1*H*-1,2,3-triazol-4-yl|methoxy)-5,1-phenylene|}bis[1-(5chloro-2-hydroxy-4-methylphenyl)prop-2-en-1-onel (IVn). Yield 70% (method a) and 89% (method b), mp 201–203°C. IR spectrum (KBr), v, cm⁻¹: 1185 (O–C), 1280 (Ar-O), 1560 (N=N), 1586 (C=C), 1638 (C=O), ¹H NMR spectrum (CDCl₃), δ, ppm: 1.25–2.20 m (22H, CH₂-CH₂), 2.38 s (6H, ArCH₃), 3.94 s (2H, ArCH₂Ar), 5.32 s (4H, OCH₂), 7.61–7.65 d (2H, $=C^{\alpha}H$, J 15.5 Hz), 7.48–7.66 m (10H_{arom}), 7.67 s $(2H_{heteroarom})$, 8.14–8.18 d $(2H_{heteroarom})$, 15.5 Hz), 12.78 s (2H, OH). ¹³C NMR spectrum (CDCl₃), δ, ppm: 25.1 (ArCH₃), 33.5,60.2, 63.1, 113.4, 119.1, 120.5, 123.8, 124.0, 129.2, 130.1, 132.8, 133.7, 141.4, 143.1, 145.3, 156.5, 161.9, 192.9(C=O). MS (m/z): 915 $[M + H]^+$. Found %: C 66.12; H 5.78; N 9.16. C₅₁H52Cl2N₆O₆. Calculated, %: C 66.88; H 5.72; N 9.18.

ACKNOWLEDGMENTS

Authors are grateful to The Head, Department of Chemistry, and Director, Central Facilities for Research and Development (CFRD), Osmania University, Hyderabad for providing laboratory facilities and spectra. One of the authors S.R is grateful to UGC, New Delhi for awarding JRF.

REFERENCES

- 1. Agalave, S.G., Maujan, S.R., and Pore, V. S., *Chem. Asian J.*, 2011, vol. 6, p. 2696.
- 2. Vatmurge, N.S., Hazra, B.G., Pore, V.S., Shirazi, F., Chavan, P.S., and Deshpande M.V., *Bioorg. Med. Chem. Lett.*, 2008, vol. 18, p., 2043.
- 3. Bock, V.D., Speijer, D., Hiemstra, H., and Maarseveen, J.H.V., *Org. Biomol. Chem.*, 2007, vol. 5, p. 971.
- 4. Aher, N.G., Pore, V.S., Mishra, N.N., Kumar, A., Shukla, P.K., Sharma, A., and Bhat, M.K., *Bioorg. Med. Chem. Lett.*, 2009, vol. 19, p. 759.
- 5. Wang, X.L., Wan, K., and Zhou, C.H., Eur. J. Med. Chem., 2010, vol. 45, p. 4631.

1614 RAMESH et al.

6. Giffin, M.J., Heaslet, H., Brik, A., Lin, Y.C., Cauvi, G., Wong, C.H., McRee, D.E., Ider, J.H., Stout, C.D., and Torbett, B.E., *J. Med. Chem.*, 2008, vol. 51, p. 6263.

- Patpi, S.R., Pulipati, L., Yogeeswari, P., Sriram, D., Jain, N., Sridhar, B., Murthy, R., Anjana, D.T. Kalivendi, S.V., and Kantevar, S., *J. Med. Chem.*, 2012, vol. 55, p. 3911.
- 8. Simone, R.D., Chini, M.G., Bruno, I., Riccio, R., Mueller, D., Werz, O., and Bifulco, G., *J. Med. Chem.*, 2011, vol. 54, p. 1565.
- 9. Soltis, M.J., Yeh, H.J., Cole, K.A., Whittaker, N.,

- Wersto, R.P., and Kohn, E.C., *Drug. Metab. Dispos.*, 1996, vol. 24, p. 799.
- 10. Bhat, B.A., Dhar, K.L., Puri, S.C., Saxena, A.K., Sshanmugavel, M., and Qazi, G.N., *Bioorg. Med. Chem. Lett.*, 2005, vol. 15, p. 3177.
- 11. Yayli, N., Ucuncu, O., Yasar, A., Kuncuk, M., Yayli, N., Akyuz, E., and Alpay-Karaoglu, S., *Turk. J. Chem.*, 2006, vol. 30, p. 505.
- 12. Kahveei, B., Ozil, M., Mentese, E., Bekircan, O., and Buruk, K., *Russ. J. Org. Chem.*, 2008, vol. 44, p. 1816.
- 13. Nagaraj, A., and Sanjeeva Reddy, C., *J. Iran. Chem. Soc.*, 2008, vol. 5, p. 262.